

Coping behaviour as an adaptation to stress: post-disturbance preening in colonial seabirds

9 n..., . n n & L n ..., ... n, ... L, g, ..., n, ... n, ... L, g, ..., n, n, ..., L, ..., ...

^aDepartment of Mathematics, Andrews University, Berrien Springs, MI 49104, USA; Department of Biology, Andrews University, Berrien Springs, MI 49104, USA; Department of Physics, Andrews University, Berrien Springs, MI 49104, USA

Received 22 November 2010; final version received 13 July 2011

Ы п л. лл л л . л Чл л л л л 4 4 п ллл л л л n лл. ١_٩ ١., ¶n. л n. л л л л л л л л л л л L, Чл L. Ч л л л лл л л п. л лл 5 л лŊ лл л л л . п. Ч лл л л Ал л n n_{/-} л лл. п. п лЧ !ч л Ыл лл п. п. лл L, п

Keywords: a ... 🔄 a a ... a ... 🦌 🔄 a ... 🔄 ... a a

AMS Subject Classification Code 5 5

1.1. Hypothesis of coping behaviour as an evolutionary adaptation to stress

 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N

Ъ л лл. . . л л л л л. . . *n n* n / л an 🕞 🛌 n **ا** л. n л. Ч. л. . л л . л. n ла 🖓 . Чл. л. л . . n

 Thalasseus sandvicensis A Sterna hirundo A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

 A

1.3. Preening as a hypothetical coping behaviour after eagle disturbance

T n 🔄 n Haliaeetus leucocephalus **n** . Ч., Ца. . n. лл n. л **ب** *n*. A. a . . . **n**. л л ŀn. 4 **n** . . . В а. а. ., Ann. Ę л.

. . л, ч _{л л} , л л. л. ١ų. Ч л n n . n 🖣 Ч H. a. **n** . . .

 Image: Second second

$$\frac{N}{t} = b(\mathbf{\beta})N - d(\mathbf{\beta})N$$

 $b(\mathbf{\beta}) \quad \mathbf{n} \quad \mathbf{n}$

$$\frac{N}{t} = b(\mathbf{\beta})N$$

$$a(\mathbf{\beta}) = a \mathbf{i} \left(--\sum_{j=1}^{n-1} \left(\frac{\beta_j - \alpha_j}{j} \right) \right) \left(--\left(\frac{\beta_n}{n} \right) \right)$$

Υ.	<u>L</u>	n .						n .	n .	5	л	
		. n	л	л .	л	л .	л	. ,		. L	<u>la</u>	

3.1. Data

л ... лл ... 4 ٩ л n ____ л 55 _ , _ \ a . л ŀ∎n , _ л л 5 Ч., л 4 л n, h л л . лл , лл . л л л ... n 🔄 K. a. a ખ ખ **ار** л. Ч., А. Ы 🗴 л. л. а. б. л.]**₀**n Ч. <u>ا</u>_

Journal of Biological Dynamics

<i>n</i> .	3	D	D
	. Ч. л/. л		
, <u>b</u> a 🚺	T n/n n		,
1 . 5 . 9 . 9. 9	л 🔄 л/ л		

 $\mathbf{a}, \mathbf{x} = \mathbf{x} \qquad \mathbf{a} \qquad \mathbf{a} \qquad \mathbf{a} \qquad \mathbf{a} \qquad \mathbf{a} \qquad \mathbf{x} \qquad \mathbf{x}$

S.M. Henson

Ϋ́,		9 <u> </u>	
β	11	5	
β			
β 🔁	— .• 5	. 9 95	
β	— . • . • . • . • . •	, , , , , , , , , , , , , , , , , , ,	
β _	— ,) ,)	•••	
ß	, , , , ,	, , , , , ,	
βA	— . (. (<i>f</i>	0.005	
βD	1	5	
βD	5		
$\beta \qquad \times D$	— ,) , i		-,
$\beta \qquad \times D$			-
$\beta \xrightarrow{3} \times D$	— . (. (<i>f</i>	0.005	-
$\beta \rightarrow D$			-
β T×D	— <u>, </u>	195	-
$\beta A \times D$	0.0.0		-
$\beta \qquad \times D$	— <u>, </u>		-
$\beta \sum \times D$		101	-
β ³ ×D	0.0.0		-
$\beta \rightarrow D$			-
ß T T×D		10	-
$\beta \qquad \Delta^{\mathbb{R}} \times D$			_

V..., X.a.s.a.a.

	С	P	5
D = D = 0			
	, I	1	5
€ B	5	5	1 5 1 1
5	, I	. 5	155
(in)	5	15	J D 5
A R	, I	. 5	
\mathbf{T} \mathbf{n} / \mathbf{n} \mathbf{n} $D = \mathbf{n} D = 0$			
	, I		
T.	5		
3	, I	J],	5 5 . 12, 15
Ē	5		
A.R	,•	. 5	. 1], 5 1],
n = n/n n/n $n = D = 0 n D = 1$			
,	, I		1
YB.	5		
٥			15 5 1
6	5		J
	. " 1, 1 - 5	.]. 5]. [™] .	ரலி உடித்ததான்

3	<i>w</i> +	ĩ	<i>w</i> +		<i>w</i> +	А	<i>w</i> ₊
Г Б, Г б А ⁸		S T B T B	0.0 .03,6 .00 .03 .03 .0	A.X T T T T S		STATE STATE TE AN	

n/. <u>я</u> а..... а.а...

aD = aD = 0 $a/a^{\frac{1}{2}} a$ a = 0 a =. . . . **n**

4. Simulation of the Darwinian dynamics model for comfort preening

 n_1 n_2 n_1 n_2 n_1 n_2 n_1 n_2 n_2 <t

,

6. Discussion

T y		ц. <u>л</u> .	h n		
	. n n		ллл	.	Ъ л
. л . л	. (4). [4]	л.!	₹ n	л.а	n. L
л. 🛓	u, n		л	. n	л
n.n _l⊲n Anl⊲	n .	л.	а Ч	Ч, а ал. а.а	лл

6.1. Inferential

Υ.	n			л	n	ել	ા	л	л	եղ	л ч	ſ	
·	11 .		÷		11 .			11	11		11		~

6.3. Biological

1. 1. 1. N. 1. S. A. a.

N =
$$\frac{a_0}{d_0 + d_f(u)}$$
 A

л

$$N = \frac{-a (u/) - /(u/)}{d f(u)}.$$

$$H(u) = -\frac{u}{2},$$
 A

. . H

 $J = 0 \qquad \dots \qquad J =$

$$J = s \left(a \left(\frac{u}{-} \right) \right)$$

Journal of Biological Dynamics

	. л	3	Хл.	, n	,
I = I = I = I	.1				
S.	1 •	5 . 		.•	5.
3	្ទ	<u>_</u>	<u>ه</u> ا	— ,	5
E F).			- , (4 •
A	5	7	1	5.1	